The influence of temperature on muscle function in the fast swimming scup. I. Shortening velocity and muscle recruitment during swimming.

نویسندگان

  • L C Rome
  • I H Choi
  • G Lutz
  • A Sosnicki
چکیده

In this study, electromyography showed that scup can swim to a maximum speed of 80 cm s-1 with their red muscle whereas previous results showed that carp can swim to only 45 cm s-1. Our aim was to evaluate the adaptations that enable scup to swim nearly twice as fast as carp. Although we anticipated that, at their respective maximum speeds, the red muscle of scup would be shortening at twice the velocity (V) of carp muscle, we found that the values of V were the same (2.04 muscle lengths s-1). At any given swimming speed, V was higher in carp than in scup because carp had a larger sarcomere length excursion and higher tail-beat frequency. The smaller sarcomere excursion in scup is primarily associated with using a less undulatory style of swimming (i.e. with a smaller backbone curvature). This less undulatory style of swimming may be an important adaptation that not only reduces V but may also reduce drag. At their respective maximum speeds, however, the 28% lower sarcomere length excursion in scup is balanced by a 26% higher tail-beat frequency, giving an equal V to that of carp. Although the scup in this study were somewhat longer than the carp in the previous one (19.7 vs 13.4 cm), we believe that many of the observed differences are species-related rather than size-related. We also found that scup swam in a kinematically similar fashion at 10 degrees C and 20 degrees C. However, at 10 degrees C, the scup could swim to only 54 cm s-1 before recruiting their white muscle whereas, at 20 degrees C, they could swim to 80 cm s-1. The difference in speed of initial white muscle recruitment, as well as information on muscle mechanics, suggests that the scup compress their recruitment order into a narrow speed range at low temperatures, thereby recruiting more muscle fibres. Quantitative analysis of red muscle electromyograms in this paper supports this hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of temperature on muscle function in the fast swimming scup. II. The mechanics of red muscle.

To understand better how scup can swim twice as fast as carp with its red muscle, we measured the mechanical properties of red muscle bundles in scup. The values of the mean maximum velocity of shortening (Vmax) at 10 degrees C (3.32 muscle lengths s-1) and at 20 degrees C (5.55 muscle lengths s-1; Q10 = 1.69) were nearly the same as those in carp. Isometric force, however, was approximately 50...

متن کامل

Contraction dynamics and power production of pink muscle of the scup (Stenotomus chrysops).

Although the contribution of red muscle to sustained swimming in fish has been studied in detail in recent years, the role of pink myotomal muscle has not received attention. Pink myotomal muscle in the scup (Stenotomus chrysops) lies just medial to red muscle, has the same longitudinal fibre orientation and is recruited along with the red muscle during steady sustainable swimming. However, pin...

متن کامل

The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions.

We have previously shown that the power output of red muscle from warm-acclimated scup is greatly reduced when the fish swim at low temperatures. This reduction occurs primarily because, despite the slowing of muscle relaxation rate at cold temperatures, warm-acclimated scup swim with the same tail-beat frequency and the same stimulation durations, thereby not affording the slower-relaxing musc...

متن کامل

The influence of thermal acclimation on power production during swimming. I. In vivo stimulation and length change pattern of scup red muscle.

Ectothermal animals are able to locomote in a kinematically similar manner over a wide range of temperatures. It has long been recognized that there can be a significant reduction in the power output of muscle during swimming at low temperatures because of the reduced steady-state (i.e. constant activation and shortening velocity) power-generating capabilities of muscle. However, an additional ...

متن کامل

The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 163  شماره 

صفحات  -

تاریخ انتشار 1992